Real-Time Planet Tracking System & Trajectory Prediction


This project aims to make a system that effectively tracks celestial bodies (such as planets ) with a fair amount of accuracy. We will be using some algorithms along with a processing unit for the calculations and a servo mechanism to show the location of the planet physically!. The hardware used in the project is pretty much basic and simple because the primary focus of this project is the software that is to make people understand the algorithms and their implementations. So please bear with my “un-formatted” hardware.

Not just planet tracking  you will learn some additional important things that you can implement in your other projects:

  1. Planet tracking using Kepler’s algorithms
  2. Many coordinate systems and their interconversion
  3. pan-tilt programming and servo mapping (3.5 turns Servo and 180 degrees Servo )
  4. MPU9250 auto-calibration programming
  5. Using Madwicks/Mahony Filter to Stabilise MPU readings.
  6. Yaw correction using P- controller with MPU9250

Continue reading

Posted in Embedded Hardware, Embedded Software, Maths, Planet Tracking System | Tagged , , , , , , , , , , , | 27 Comments